January 2024

WHY IS THERE THIS “LOVE – HATE” RELATIONSHIP WITH SAXON MATH BOOKS

Over the past forty-some years, I have noticed that parents, students, and educators I have spoken to, either strongly like or just as strongly  dislike John Saxon’s math books. During my workshops at home school conventions, I was often asked the question about why this paradigm exists.  Or, as one home school educator put it, “Why is there this Love – Hate relationship with Saxon math books?”  It is easy to understand why educators like John’s math books.  They offer continuous review while presenting challenging concepts in increments rather than overwhelming the student with the entire process in a single lesson. They allow for mastery of the fundamentals of mathematics.

More than forty years ago, in an interview with William F. Buckley on the FIRING LINE in 1983, John Saxon responded to educators who were labeling his books as “blind, mindless drill.” He accused them of misusing the word “drill.” John reminded the listeners that:

“Van Cliburn does not go to the piano to do piano drill. He practices – and – Reggie Jackson does not take batting drill, he takes batting practice.”

John went on to explain that

“Algebra is a skill like playing the piano, and practice is required for learning to play the piano. You do not teach a child to play the piano by teaching him music theory. You do not teach a child algebra by teaching him advanced algebraic concepts that had best be reserved till his collegiate years after he has mastered the fundamentals  – and can then better understand the advanced concepts.”  

As John would often say, Doing precedes UnderstandingUnderstanding does not precede Doing.”

It is my belief that, John Saxon’s math books remain the best math books on the market today for mastery of math concepts!Successful Saxon math students cannot stop telling people how they almost aced their ACT or SAT math test, or CLEP’d out of their freshman college algebra course. And those who misuse John Saxon’s math books, and ultimately leave Saxon math for some other “catchy – friendly” math curriculum, rarely tell you that their son or daughter had to take a no-credit algebra course when they entered the university because they failed the entry level math test.  Yes, they had learned about the math, but they did not master or retain it.

Just what is it that creates this strong dislike of John Saxon’s math books?  During these past forty-some years I have observed there are several general reasons that explain most of this strong dislike.  Any one of these – or a combination of several – will create a situation that discourages or frustrates the student and eventually turns both the parent and the student against the Saxon math books.

Here are several of those reasons:

ENTERING SAXON MATH AT THE WRONG LEVEL: Not a day goes by that I do not receive an email or telephone call from frustrated parents who cannot understand why their child is failing Saxon Algebra 1 when they just left another publisher’s pre-algebra book  receiving A’s and B’s on their tests in that curriculum.  I explain that the math curriculum they just left is a good curriculum, but it is teaching the test, and while the student is learning, retention of the concepts is only temporary because no system of constant review was in place to enable mastery of the learned concepts. 

Every time I have encountered this situation, I have students take the on-line Saxon Algebra 1 placement test – and without exception, these students have failed that test.  That failure tends to confuse the parents when I tell them the test the student just failed was the last test in the Saxon Pre-Algebra textbook. Does this tell you something? This same entry level problem can occur when switching to Saxon at any level in the Saxon math series from Math 54 through the upper level algebra courses; however, the curriculum shock is less dynamic and discouraging when the switch is made after moving from a fifth grade math curriculum into the Saxon sixth grade Math 76 book. 

MIXING OUTDATED EDITIONS WITH NEWER ONES: There is nothing wrong with using the older out-of-print editions of John Saxon’s original math books so long as you use all of them – from Math 54 to Math 87. However, for the student to be successful in the new third edition of Algebra 1, the student has to go from the older first edition of Math 87 to the second or third edition of Algebra ½ before attempting the third edition of the Saxon Algebra 1 course. 

But when you start with a first edition of the Math 54 book in the fourth grade and then move to a second or third edition of Math 65 for the fifth grade; or you move from a first or second edition of the sixth grade Math 76 book to a second or third edition of the seventh grade Math 87 book, you are subjecting the students to a frustrating challenge which in some cases does not allow them to make up the gap they encounter when they move from an academically weaker text to an academically stronger one. 

The new second or third editions of the fifth grade Saxon Math 65 are stronger in academic content then the older first edition of the sixth grade Math 76 book.  Moving from the former to the latter is like skipping a book and going from a fifth grade to a seventh grade textbook.  Again, using the entire selection of John’s original first edition math books is okay so long as you do not attempt to go from one of the old editions to a newer edition.  If you must do this, please email or call me for assistance before you make the change.

SKIPPING LESSONS OR PROBLEMS: How many times have I heard someone say, “But the lesson was easy and I wanted to finish the book early, so I skipped the easy lesson. That shouldn’t make any difference.” Or, “There are two of each type of problem, so why do all thirty problems?     Just doing the odd numbered ones is okay because the answers for them are in the back of the book.”  Well, let’s apply that logic to your music lessons. 

We will just play every other musical note when there are two of the same notes in a row.  After all, when we practice, we already know the notes we’re skipping.  Besides, it makes the piano practice go faster. Or an even better idea. When you have to play a piece of music, why not skip the middle two sheets of music because you already know how they sound and the audience has heard them  before anyway. 

My standard reply to these questions is “Must students always do something they do not know how to do?  Can they not do something they already know how to do so that they can get better at it? The word used to describe that particular phenomenon is “Mastery!”

USING A DAILY ASSIGNMENT GRADE INSTEAD OF USING THE WEEKLY TEST GRADES:  Why would John Saxon add thirty tests to each level math book if he thought they were not important and did not want you to use them? Grading the daily assignments is misleading because it only reflects students’ short term memory, not their mastery.  Besides, unless you stand over students every day and watch how they get their answers, you have no idea what created the daily answers you just graded. 

Doing daily work is like taking an open book test with unlimited time.  The daily assignment grades reflect short term memory.  However, answering twenty test questions – which came from among the 120 – 150 daily problems the students worked on in the past four or five days  –  reflects what students have mastered and placed in long term memory. John Saxon’s math books are the only curriculum on the market today that I am aware of that require a test every four or five lessons.  Grading the homework and skipping the tests negates the system of mastery, for the student is then no longer held accountable for mastering the concepts.

MISUSE OF THE SAXON PLACEMENT TESTS:  When students finish one Saxon level math book, you should never administer the Saxon placement test to see what their next book should be. The placement tests were designed to see at what level your child would enter the Saxon series based upon what they had mastered from their previous math experiences. They were not designed to evaluate Saxon math students on their progress. The only valid way to determine which the next book to use would be is by evaluating the student’s last four or five test scores in their current book.  If those test scores are eighty or better, in a fifty minute test – using no partial credit – then they are prepared for the next level Saxon math book.

In March of 1993, in the preface to his first edition Physics textbook, John wrote about “The Coming Disaster in Science Education in America.” He explained that this was a result of actions by the National Council of Teachers of Mathematics (NCTM).  He went on to explain that the NCTM had decided, with no advance testing whatsoever, to replace testing for calculus, physics, chemistry and engineering with a watered-down mathematics curriculum that would emphasize the teaching of probability and statistics and would replace the development of paper-and-pencil skills with drills on calculators and computers.  John Saxon believed that this shift in emphasis “. . . would leave the American student bereft of the detailed knowledge of the parts – that permit comprehension of the whole.”

If you use the books as John Saxon intended them to be used, you will join the multitude of other successful Saxon users who value his math books. I realize that every child is different.  And while the above situations apply to about 99% of all students, there are always exceptions that justify the rule.  If your particular situation does not fit neatly into the above descriptions, please feel free to email me at art.reed@thesaxonteacher.com or call me at (580) 234-0064 (CST).  If you email me, please include your telephone number and I will gladly call you at my expense.